An introduction to Trigonometry
Author:
Johan Claeys
Content URL: Link To Content
About An introduction to Trigonometry:
Contents:
# Definitions and basics
* Trigonometric circle and angles
* Trigonometric numbers of a real number t
* Basic formulas
* Related values
* supplementary values
* complementary values
* Opposite values
* Anti supplementary values
* The right-angled triangle
* Area of a triangle
* Sine rule
o Homogeneous expression in a, b and c
* Cosine rule
# Trigonometric functions
* The sine function
* The cosine function
* The tangent function
* The cotangent function
# Inverse Trigonometric Functions
* The arcsin function
* The arccos function
* The arctan function
* The arccot function
# Sum formulas
* cos(u - v)
* cos(u + v)
* sin(u - v)
* sin(u + v)
* tan(u + v)
* tan(u - v)
* sin(2u)
* cos(2u)
* tan(2u)
* Carnot formulas
* t-formulas
# Special values
* pi/3
* pi/4
* pi/6
# Trigonometric equations
* Base equations
o cos(u) = cos(v)
o sin(u) = sin(v)
o tan(u) = tan(v)
o cot(u) = cot(v)
* Reducing to base equations
* Using an additional unknown
* Using factorization
* The equation a.sin(u)+b.cos(u) = c
* Homogeneous equations
# Calculations with inverse trigonometric functions
# Definitions and basics
* Trigonometric circle and angles
* Trigonometric numbers of a real number t
* Basic formulas
* Related values
* supplementary values
* complementary values
* Opposite values
* Anti supplementary values
* The right-angled triangle
* Area of a triangle
* Sine rule
o Homogeneous expression in a, b and c
* Cosine rule
# Trigonometric functions
* The sine function
* The cosine function
* The tangent function
* The cotangent function
# Inverse Trigonometric Functions
* The arcsin function
* The arccos function
* The arctan function
* The arccot function
# Sum formulas
* cos(u - v)
* cos(u + v)
* sin(u - v)
* sin(u + v)
* tan(u + v)
* tan(u - v)
* sin(2u)
* cos(2u)
* tan(2u)
* Carnot formulas
* t-formulas
# Special values
* pi/3
* pi/4
* pi/6
# Trigonometric equations
* Base equations
o cos(u) = cos(v)
o sin(u) = sin(v)
o tan(u) = tan(v)
o cot(u) = cot(v)
* Reducing to base equations
* Using an additional unknown
* Using factorization
* The equation a.sin(u)+b.cos(u) = c
* Homogeneous equations
# Calculations with inverse trigonometric functions